Distributed Estimation for Coordinated Target Tracking in a Cluttered Environment

Benjamin I. Triplett Daniel J. Klein Kristi A. Morgansen

University of Washington
Aeronautics & Astronautics
Seattle, WA 98115
http://www.aa.washington.edu
http://vger.aa.washington.edu

October 15, 2007
Motivation

- Scope is multi-robot systems coupled by communication
- Specific application is target tracking in cluttered environment
- A multi-agent approach is advantageous
 - Agents can spread out around the target
 - Inter-vehicle communication improves target state estimates
- But, a number of fundamental questions arise:
 - What should each vehicle “say”?
 - How frequently should communication events occur?
 - How much does communication really help?

Objective

The objective of this work is to explore these and other questions...
Motivation

- Scope is multi-robot systems coupled by communication
- Specific application is target tracking in cluttered environment
- A multi-agent approach is advantageous
 - Agents can spread out around the target
 - Inter-vehicle communication improves target state estimates
- But, a number of fundamental questions arise:
 - What should each vehicle “say”?
 - How frequently should communication events occur?
 - How much does communication really help?

Objective

The objective of this work is to explore these and other questions
Motivation

- Scope is multi-robot systems coupled by communication
- Specific application is target tracking in cluttered environment
- A multi-agent approach is advantageous
 - Agents can spread out around the target
 - Inter-vehicle communication improves target state estimates
- But, a number of fundamental questions arise:
 - What should each vehicle “say”?
 - How frequently should communication events occur?
 - How much does communication really help?

Objective

The objective of this work is to explore these and other questions
Motivation

▶ Scope is multi-robot systems coupled by communication
▶ Specific application is target tracking in cluttered environment
▶ A multi-agent approach is advantageous
 ● Agents can spread out around the target
 ● Inter-vehicle communication improves target state estimates
▶ But, a number of fundamental questions arise:
 ● What should each vehicle “say”?
 ● How frequently should communication events occur?
 ● How much does communication really help?

Objective

The objective of this work is to explore these and other questions
Problem Overview: Coordinated Target Tracking

Consider a target tracking scenario
- One target vehicle
- N non-holonomic pursuit vehicles

Task: estimate the target state

Main challenges stem from
- Communication limitations
- Sensor occlusions and failures

Three main components:
- Communication
- Estimation
- Control
Consider a target tracking scenario
- One target vehicle
- N non-holonomic pursuit vehicles

Task: estimate the target state

Main challenges stem from
- Communication limitations
- Sensor occlusions and failures

Three main components:
- Communication
- Estimation
- Control
Problem Overview: Coordinated Target Tracking

- Consider a target tracking scenario
 - One target vehicle
 - N non-holonomic pursuit vehicles
- Task: estimate the target state
- Main challenges stem from
 - Communication limitations
 - Sensor occlusions and failures
- Three main components:
 - Communication
 - Estimation
 - Control
Related work

- **Campbell and Whitacre\(^1\)**
 - \(N\)-UAVs tracked a single target
 - **Communication**
 - Transmitted information state, after *every* measurement
 - Necessarily all-to-all communication
 - **Estimation**
 - Distributed square root sigma-point information filter
 - Centralized estimate was recovered by each agent
 - **Control**
 - For \(N = 2\), maintain 90° clock angle

- **Eickstedt and Benjamin**
- **Olfati-Saber**

Related work

- Campbell and Whitacre
- Eickstedt and Benjamin\(^2\)
 - Two pursuit vehicles tracked a target
 - Vehicles were coupled to a central database
 - **Communication** was every measurement
 - **Estimation** was done with a centralized EKF
 - **Control** was behavior based, but also centralized
- Olfati-Saber

Related work

► Campbell and Whitacre
► Eickstedt and Benjamin
► Olfati-Saber\(^3\)

- \(N\) nodes estimated the state of a target
- Objective was to *agree*, not get best estimate
- **Communication**
 - Communicated only with neighbors
 - Information was transmitted after *every* measurement
 - Linear target dynamics, undirected topology, no delay
- **Estimation**
 - Distributed Kalman Filtering
- **Control** was not considered

Novel aspects of this work

► The work in this paper explores a novel area

► **Communication**
 - Communication occurs *less frequently* than measurements
 - Sequential one-to-all directed broadcast topology
 - Information arrives delayed

► **Estimation**
 - EKF runs on each agent to estimate the target state

► **Control**
 - Behavior based (computed locally)
 - Uses local target state estimate

► Compare several communication protocols and communication timings in simulation
Outline

1. Introduction
2. System Description
3. Estimation
4. Control
5. Results
6. Summary and Future Work
Vehicle Dynamics

System Description

- Vehicles are air, ground, or underwater vehicles
- Steering control inputs
- Pursuit vehicles are constant-speed unicycles
- Target is variable-speed unicycle
- $x_k = [x, y, \theta, v]$ of the target
Vehicle Dynamics

System Description

- Vehicles are air, ground, or underwater vehicles
- Steering control inputs
- Pursuit vehicles are constant-speed unicycles
- Target is variable-speed unicycle
- $x_k = [x, y, \theta, v]$ of the target

\[
\begin{align*}
\dot{x}^i &= v \cos(\theta^i), \quad i = 1 \ldots N \\
\dot{y}^i &= v \sin(\theta^i), \\
\dot{\theta}^i &= u_{\text{steer}}^i, \quad u_{\text{steer}}^i \in \bar{u}_{\text{steer}} [-1, 1] \\
\dot{v} &= 0
\end{align*}
\]
Vehicle Dynamics

System Description

- Vehicles are air, ground, or underwater vehicles
- Steering control inputs
- Pursuit vehicles are constant-speed unicycles
- Target is variable-speed unicycle
- $x_k = [x, y, \theta, v]$ of the target

\[\begin{align*}
\dot{x} &= v \cos(\theta) \\
\dot{y} &= v \sin(\theta) \\
\dot{\theta} &= u^{\text{steer}}_i \\
\dot{v} &= u^{\text{accel}}_t
\end{align*}\]
Vehicle Dynamics

System Description

- Vehicles are air, ground, or underwater vehicles
- Steering control inputs
- Pursuit vehicles are constant-speed unicycles
- Target is variable-speed unicycle
- \(x_k = [x, y, \theta, v] \) of the target

\[
\begin{align*}
\dot{x} &= v \cos(\theta) \\
\dot{y} &= v \sin(\theta) \\
\dot{\theta} &= u^{i}_{\text{steer}} \\
\dot{v} &= u^{t}_{\text{accel}}
\end{align*}
\]
Each pursuit vehicle makes a measurement every T_s sec

$$\tilde{y}_k^i = H x_k + v_k^i, \quad v_k^i \sim N(0, R^i)$$

$$H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

- Sensors fail stochastically
- Clutter impedes vehicles and occludes sensors
Communication via a sequence of one-to-all broadcasts

- Broadcasts occur every $T_b = n_b T_s$ seconds, $n_b \in \mathbb{N}$
- Three communication protocols are considered:
 - No communication (local estimates only)
 - Transmit one, two, or three recent measurements
 - Transmit the local target state estimate
- Communications arrive delayed by T_s seconds
Communication Network

System Description

- Communication via a sequence of one-to-all broadcasts
- Broadcasts occur every $T_b = n_b T_s$ seconds, $n_b \in \mathbb{N}$
- Three communication protocols are considered:
 - No communication (local estimates only)
 - Transmit one, two, or three recent measurements
 - Transmit the local target state estimate
- Communications arrive delayed by T_s seconds
Communication via a sequence of one-to-all broadcasts

Broadcasts occur every $T_b = n_b T_s$ seconds, $n_b \in \mathbb{N}$

Three communication protocols are considered:

- No communication (local estimates only)
- Transmit one, two, or three recent measurements
- Transmit the local target state estimate

Communications arrive delayed by T_s seconds
Outline

1. Introduction
2. System Description
3. Estimation
 - Shared Measurements
 - Shared Estimates
4. Control
5. Results
6. Summary and Future Work
Coordinated Target State Estimation

- An Extended Kalman Filter (EKF) runs on each vehicle
- Target state estimate propagation
 - Substitutes noise for actual control input
 - Uses linearization of target estimate error dynamics

\[
F(\hat{x}^i_k) = \begin{bmatrix}
0 & 0 & -\hat{v}^i_k \sin \hat{\theta}^i_k & \cos \hat{\theta}^i_k \\
0 & 0 & \hat{v}^i_k \cos \hat{\theta}^i_k & \sin \hat{\theta}^i_k \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

- The filter is backed up to fuse received (delayed) information
When sharing measurements, broadcasting vehicle transmits:

1. One, two, or three most recent measurements
2. The corresponding time indices
3. The sensor error covariance matrix (if necessary)

Easy to adapt EKF because errors are *uncorrelated*

Simply use the measurement as if it were local
When sharing measurements, broadcasting vehicle transmits:

1. One, two, or three most recent measurements
2. The corresponding time indices
3. The sensor error covariance matrix (if necessary)

Easy to adapt EKF because errors are *uncorrelated*

Simply use the measurement as if it were local
When sharing estimates, broadcasting vehicle transmits:

1. Target state estimate (mean and error covariance)
2. Corresponding time index

Problem: Received estimate is *correlated* with local estimate

Maximum-likelihood (ML) fusion requires knowledge of\(^1\):

- Linearized target error dynamics ← mean target state estimate
- Kalman gain ← estimate and sensor error covariance matrices
- ... at every measurement step

Theory supports *pairwise* fusion only

OEF is not practical, used as a benchmark

When sharing estimates, broadcasting vehicle transmits:

1. Target state estimate (mean and error covariance)
2. Corresponding time index

Problem: Received estimate is *correlated* with local estimate

Maximum-likelihood (ML) fusion requires knowledge of:

- Linearized target error dynamics ← mean target state estimate
- Kalman gain ← estimate and sensor error covariance matrices

...at every measurement step

Theory supports *pairwise* fusion only

OEF is not practical, used as a benchmark

Omniscient Estimate Fusion

- When sharing estimates, broadcasting vehicle transmits:
 1. Target state estimate (mean and error covariance)
 2. Corresponding time index

- **Problem:** Received estimate is *correlated* with local estimate

- Maximum-likelihood (ML) fusion requires knowledge of\(^1\):
 - Linearized target error dynamics ← mean target state estimate
 - Kalman gain ← estimate and sensor error covariance matrices
 - *...at every measurement step*

- Theory supports *pairwise* fusion only

- **OEF is not practical**, used as a benchmark

Omniscient Estimate Fusion

- When sharing estimates, broadcasting vehicle transmits:
 1. Target state estimate (mean and error covariance)
 2. Corresponding time index

- **Problem:** Received estimate is *correlated* with local estimate

- Maximum-likelihood (ML) fusion requires knowledge of\(^1\):
 - Linearized target error dynamics ← mean target state estimate
 - Kalman gain ← estimate and sensor error covariance matrices
 - *...at every measurement step*

- Theory supports *pairwise* fusion only

- OEF is not practical, used as a benchmark

When sharing estimates, broadcasting vehicle transmits:

1. Target state estimate (mean and error covariance)
2. Corresponding time index

Problem: Received estimate is *correlated* with local estimate

Maximum-likelihood (ML) fusion requires knowledge of 1:

- Linearized target error dynamics ← mean target state estimate
- Kalman gain ← estimate and sensor error covariance matrices
- ... at every measurement step

Theory supports pairwise fusion only

OEF is not practical, used as a benchmark

Outline

1. Introduction
2. System Description
3. Estimation
4. Control
5. Results
6. Summary and Future Work
Coordinated Target Pursuit

- Control is based on the local target state estimate
- Assume pursuers know other pursuers’ state
- **Coordinated** control is composed of three behaviors:

\[u^i_{steer} = (1 - w)(u^i_{ct} + u^i_{space}) + u^i_{oa} \]

1. Centroid to Target Control \((u_{ct})\)
2. Inter-Vehicle Spacing \((u_{space})\)
3. Obstacle Avoidance \((u_{oa})\)

- **Uncoordinated** control is composed as:

\[u^i_{steer} = (1 - w)u^i_{ct} + u^i_{oa} \]
Coordinated Target Pursuit

- Control is based on the local target state estimate
- Assume pursuers know other pursuers’ state
- **Coordinated** control is composed of three behaviors:

 \[
 u_{steer}^i = (1 - w)(u_{ct}^i + u_{space}^i) + u_{oa}^i
 \]

 1. **Centroid to Target Control** \(u_{ct}^i\)
 - Brings the group centroid to the target
 - \(u_{ct}^i = k_{ct} \sin(\theta_{ct} - \theta^i)\)

 2. **Inter-Vehicle Spacing** \(u_{space}^i\)

 3. **Obstacle Avoidance** \(u_{oa}^i\)

- **Uncoordinated** control is composed as:

 \[
 u_{steer}^i = (1 - w)u_{ct}^i + u_{oa}^i
 \]
Coordinated Target Pursuit

- Control is based on the local target state estimate
- Assume pursuers know other pursuers' state
- **Coordinated** control is composed of three behaviors:

\[u_{\text{steer}}^i = (1 - w)(u_{ct}^i + u_{\text{space}}^i) + u_{oa}^i \]

1. **Centroid to Target Control** \((u_{ct})\)
2. **Inter-Vehicle Spacing** \((u_{\text{space}})\)
 - Keeps vehicles dispersed
 - \(u_{\text{space}}^i = \sum_{j \neq i}^N \left(1 - \left(\frac{r_{s0}}{d_{ij}}\right)^2\right) \sin(\theta_{ij}^i - \theta^i) \)
3. **Obstacle Avoidance** \((u_{oa})\)

- **Uncoordinated** control is composed as:

\[u_{\text{steer}}^i = (1 - w)u_{ct}^i + u_{oa}^i \]
Coordinated Target Pursuit

- Control is based on the local target state estimate
- Assume pursuers know other pursuers’ state
- **Coordinated** control is composed of three behaviors:

\[u_{steer}^i = (1 - w)(u_{ct}^i + u_{space}^i) + u_{oa}^i \]

1. **Centroid to Target Control** \((u_{ct})\)
2. **Inter-Vehicle Spacing** \((u_{space})\)
3. **Obstacle Avoidance** \((u_{oa})\)
 - Prevent vehicles from colliding with obstacles
 - \(u_{oa}^i = \begin{cases}
 0 & \text{if } d_{oj}^i > r_{oT}^j \\
 \sum_{j \in N_o} \cos(\Delta \theta_{oj}^i) \text{sgn}(\Delta \theta_{oj}^i) f_d(d_{oj}^i) & \text{otherwise}
 \end{cases} \)

- **Uncoordinated** control is composed as:

\[u_{steer}^i = (1 - w)u_{ct}^i + u_{oa}^i \]
Coordinated Target Pursuit

- Control is based on the local target state estimate
- Assume pursuers know other pursuers’ state
- **Coordinated** control is composed of three behaviors:

\[u^i_{\text{steer}} = (1 - w)(u^i_{ct} + u^i_{space}) + u^i_{oa} \]

1. Centroid to Target Control \((u_{ct}) \)
2. Inter-Vehicle Spacing \((u_{space}) \)
3. Obstacle Avoidance \((u_{oa}) \)

- **Uncoordinated** control is composed as:

\[u^i_{\text{steer}} = (1 - w)u^i_{ct} + u^i_{oa} \]
Outline

1. Introduction
2. System Description
3. Estimation
4. Control
5. Results
 - Isolated Estimator Experiments
 - Pursuit Vehicle Coordination
6. Summary and Future Work
Overview of Experiments

- **Isolated estimator experiments:**
 - Designed to compare the various communication protocols
 - Sensor reliability curve is not used
 - No sensor occlusions or obstacles

- **Pursuit vehicle coordination:**
 - Designed to test a more realistic scenario
 - Sensor reliability curve *is* used
 - Obstacles are present

- **Default simulation parameters:**
 - Broadcast sequence is sequential
 - $N = 3$, $v^i = 1$, $v^{target} = 0.5$, $T_s = 1$, $T_b = 4$

- **Performance metrics**
 - Mean log likelihood (Across all agents and time)
 - Mean integrated position error
Overview of Experiments

- **Isolated estimator experiments:**
 - Designed to compare the various communication protocols
 - Sensor reliability curve is not used
 - No sensor occlusions or obstacles

- **Pursuit vehicle coordination:**
 - Designed to test a more realistic scenario
 - Sensor reliability curve *is* used
 - Obstacles are present

- **Default simulation parameters:**
 - Broadcast sequence is sequential
 - $N = 3$, $v^i = 1$, $v^{target} = 0.5$, $T_s = 1$, $T_b = 4$

- **Performance metrics**
 - Mean log likelihood (Across all agents and time)
 - Mean integrated position error
Overview of Experiments

- **Isolated estimator experiments:**
 - Designed to compare the various communication protocols
 - Sensor reliability curve is not used
 - No sensor occlusions or obstacles

- **Pursuit vehicle coordination:**
 - Designed to test a more realistic scenario
 - Sensor reliability curve *is* used
 - Obstacles are present

- **Default simulation parameters:**
 - Broadcast sequence is sequential
 - $N = 3$, $v^i = 1$, $v^{target} = 0.5$, $T_s = 1$, $T_b = 4$

- **Performance metrics**
 - Mean log likelihood (Across all agents and time)
 - Mean integrated position error
Overview of Experiments

- **Isolated estimator experiments:**
 - Designed to compare the various communication protocols
 - Sensor reliability curve is not used
 - No sensor occlusions or obstacles

- **Pursuit vehicle coordination:**
 - Designed to test a more realistic scenario
 - Sensor reliability curve *is* used
 - Obstacles are present

- **Default simulation parameters:**
 - Broadcast sequence is sequential
 - $N = 3$, $v^i = 1$, $v^{target} = 0.5$, $T_s = 1$, $T_b = 4$

- **Performance metrics**
 - Mean log likelihood (Across all agents and time)
 - Mean integrated position error
Isolated Estimator Experiments

Results: Sensor Reliability

- Transmitting more measurements yields better estimates
- Transmitting three measurements ≈ OEF
Results: Sensor Reliability

- Transmitting more measurements yields better estimates
- Transmitting three measurements ≈ OEF
Results: Sensor Reliability

- Transmitting more measurements yields better estimates
- Transmitting three measurements \approx OEF
Results: Communication Period

- Communication period is varied
- Sensor measurement period $T_s = 1$
- Fixed sensor reliability of 70%
- **Unexpected**: Measurement transmission degrades similarly to estimate transmission
Communication period is varied
- Sensor measurement period $T_s = 1$
- Fixed sensor reliability of 70%
- **Unexpected**: Measurement transmission degrades similarly to estimate transmission
Results: Coordination

Uncoordinated

Coordinated
Results: Coordination

- Coordinated vs. Uncoordinated
- Clutter density is varied
- Three-measurement communication protocol
Outline

1. Introduction
2. System Description
3. Estimation
4. Control
5. Results
6. Summary and Future Work
Summary and Future Work

▶ Summary

- Vehicles measure more frequently than they communicate
- Compared measurement and estimate transmissions
- Found communication helps significantly
- Transmitting recent measurements is quite good
- Coordinated control improves estimates

▶ Future work

- Explore estimation performance vs. N
- Select optimal broadcast sequences
- Improve upon estimate fusion
 - Extend beyond pairwise fusion
 - May require conservative approximations

Thanks!
Summary and Future Work

► Summary
 • Vehicles measure more frequently than they communicate
 • Compared measurement and estimate transmissions
 • Found communication helps significantly
 • Transmitting recent measurements is quite good
 • Coordinated control improves estimates

► Future work
 • Explore estimation performance vs. N
 • Select optimal broadcast sequences
 • Improve upon estimate fusion
 • Extend beyond pairwise fusion
 • May require conservative approximations

Thanks!
Summary and Future Work

► Summary
 • Vehicles measure more frequently than they communicate
 • Compared measurement and estimate transmissions
 • Found communication helps significantly
 • Transmitting recent measurements is quite good
 • Coordinated control improves estimates

► Future work
 • Explore estimation performance vs. N
 • Select optimal broadcast sequences
 • Improve upon estimate fusion
 • Extend beyond pairwise fusion
 • May require conservative approximations

Thanks!